
Board Layout: BBC micro:bit
Edge Connector On/Off Switch

Inserting a BBC micro:bit:

To use the :GAME ™ 64, the BBC micro:bit should be inserted firmly into the edge
connector, making sure that the BBC micro:bit LED display is facing in the same
direction as the :GAME ™ 64 LED display.

Examples: For some starter games and ideas for what else you could do, go to: http://
www.kitronik.co.uk/5626

:GAME ™ 64 for the BBC micro:bit
www.kitronik.co.uk/5626

Pin Expansion Pads:
Left – Pin 19
Middle – 3.3V
Right – GND

The :GAME ™64 is a programmable gamepad for the BBC micro:bit. It features 64
colour addressable LEDs arranged in an 8 x 8 display, a piezo buzzer for audio feedback,
a vibration motor for haptic feedback, and 6 input buttons. It also breaks out P19, P20
& LED DOUT to standard 0.1” footprints. Each of these pins also have the required
voltage and GND pads. The BBC micro:bit is connected via a standard card slot
connector.

The board produces a regulated supply that is fed into the 3V and GND connections to
power the connected BBC micro:bit, removing the need to power the BBC micro:bit
separately. To protect the BBC micro:bit if power is supplied through it, the ™ LEDs
will not illuminate.

4 x M3 Mounting
Holes

Fire Button 1 [Pin 15]

64 ZI ™ LEDs
(8 x 8 Display)
[Pin 0]

ZIP™ LED
Expansion Pads:
Top – GND
Middle – +BATT V
Bottom – DOUT

Fire Button 2 [Pin 16]

Piezo Buzzer [Pin 2]

Vibration Motor [Pin 1]

Pin Expansion Pads:
Left – GND
Middle – 3.3V
Right – Pin 20

Joypad Up [Pin 8]

Joypad Right [Pin 13]

Joypad Left [Pin 12]

Joypad Down [Pin 14]

Rear: 3 x AA Battery Holders Caution:
 TM LEDs may become hot if used at high brightness
for prolonged periods.

http://www.kitronik.co.uk/5626
http://www.kitronik.co.uk/5626

Board Dimensions:

:GAME ™ 64 for the BBC micro:bit
www.kitronik.co.uk/5626

(All measurements are given in mm)

Electrical Information

Operating Voltage (Vcc) [ZIP LEDs] +3.5V – +5.3V

Regulated Voltage [BBC micro:bit, Buttons, Vibration Motor] +3.3V

Max Current (ZIP LEDs White @ 100% brightness and all devices in use) 1.6A (21mA per ZIP LED, 250mA max on +3.3V reg. voltage)

Number of ZIP LEDs 64

Number of external channels 3 (1 x ZIP LED, 2 x I2C/IO pin, each IO pin rated +3.3V @ 5mA)

:GAME ™ 64 for the BBC micro:bit
www.kitronik.co.uk/5626

Note on External Channels:

Care should be taken when using the external breakouts
for Pins 19 and 20 as GPIOs, as this can cause issues with
the I2C devices on the BBC micro:bit itself (e.g. compass
and accelerometer).

When using the 3.3V breakout pins, these should not
draw more than 50mA each, or 100 mA in total, due to
the current limit of the voltage regulator.

Rear view with BBC micro:bit & batteries:

This program was created in the Microsoft MakeCode Blocks Editor for the BBC micro:bit. It creates a single pixel sprite which can be moved around the display using the
Joypad buttons and have its colour changed using the Fire buttons. When the sprite reaches the display edge, the motor will vibrate and the buzzer will play a short tune.
Note: There is Kitronik package available for the :GAME TM 64 on Microsoft MakeCode (the green blocks shown here).

Microsoft MakeCode Blocks Editor Code

:GAME ™ 64 for the BBC micro:bit
www.kitronik.co.uk/5626

MicroPython Editor Code

:GAME ™ 64 for the BBC micro:bit
www.kitronik.co.uk/5626

from microbit import *
import neopixel
import music

Enable ZIP LEDs to use x & y values
def zip_plot(x, y, colour):
 zip_led[x+(y*8)] = (colour[0], colour[1],
colour[2])

Function to play tune on buzzer and run
motor for 500ms
def hit_edge():
 music.play(music.BA_DING, pin2, False)
 pin1.write_digital(1)
 sleep(500)
 pin1.write_digital(0)

Setup variables and initial ZIP LED display
zip_led = neopixel.NeoPixel(pin0, 64)
sprite_x = 3
sprite_y = 3

Colours: Red, Yellow, Green, Blue, Purple,
White
colours = [[20, 0, 0], [20, 20, 0], [0, 20, 0], [0, 0,
20], [20, 0, 20], [20, 20, 20]]
sprite_colour = colours[3]
zip_plot(sprite_x, sprite_y, sprite_colour)
zip_led.show()

This program was created in the MicroPython Mu Editor for the BBC micro:bit. It provides exactly the same functionality as the MakeCode Blocks program.

While loop to run forever
while True:
 # Check button presses
 if pin8.read_digital() == 0 and sprite_y == 0:
 hit_edge()
 elif pin8.read_digital() == 0 and sprite_y !=
0:
 sprite_y = sprite_y - 1

 if pin14.read_digital() == 0 and sprite_y == 7:
 hit_edge()
 elif pin14.read_digital() == 0 and sprite_y !=
7:
 sprite_y = sprite_y + 1

 if pin12.read_digital() == 0 and sprite_x ==
0:
 hit_edge()
 elif pin12.read_digital() == 0 and sprite_x !=
0:
 sprite_x = sprite_x - 1

 if pin13.read_digital() == 0 and sprite_x ==
7:
 hit_edge()
 elif pin13.read_digital() == 0 and sprite_x !=
7:
 sprite_x = sprite_x + 1

 if pin15.read_digital() == 0:
 if colours.index(sprite_colour) - 1 < 0:
 sprite_colour = colours[0]
 else:
 sprite_colour =
colours[(colours.index(sprite_colour) - 1)]

 if pin16.read_digital() == 0:
 if colours.index(sprite_colour) + 1 > 5:
 sprite_colour = colours[5]
 else:
 sprite_colour =
colours[(colours.index(sprite_colour) + 1)]

 # Clear and redisplay the ZIP LEDs after each
button press check
 zip_led.clear()
 zip_plot(sprite_x, sprite_y, sprite_colour)
 zip_led.show()

 # 100ms pause before restarting the while
loop
 sleep(100)

