
Adafruit RFM69HCW and RFM9X LoRa Packet Radio Breakouts
Created by lady ada

Last updated on 2016-09-13 05:09:05 PM UTC

2
4
8
8
9

10
11
13
13
13
14

15
15

17
19
23
24
24
24
25

25
25
28

31
32

32
32
33
33
33

34
35
35

Guide Contents

Guide Contents
Overview
Pinouts
Power Pins
SPI Logic pins:
Radio GPIO
Antenna Connection
Assembly

Prepare the header strip:
Add the breakout board:
And Solder!

Antenna Options
Wire Antenna

uFL Connector
SMA Edge-Mount Connector
Wiring
RFM69 Test
"Raw" vs Packetized
Arduino Libraries

LowPowerLab RFM69 Library example

Basic RX & TX example
Transmitter example code
Receiver example code

Radio Net & ID Configuration
Radio Type Config

Radio Pinout
Setup

Initializing Radio
Transmission Code
Receiver Code

Want more?
RFM9X Test
Arduino Library

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 2 of 45

35

36
36
38

41
41
41
42
42
43

44
44
44
44

RadioHead RFM9x Library example

Basic RX & TX example
Transmitter example code
Receiver example code

Radio Pinout
Frequency
Setup

Initializing Radio
Transmission Code
Receiver Code

Downloads
Datasheets & Files
Schematic
Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 3 of 45

Overview
"You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is meowing
in Los Angeles. Do you understand this? And radio operates exactly the same way: you send signals here, they
receive them there. The only difference is that there is no cat."

Sending data over long distances is like magic, and now you can be a magician with this range of powerful and
easy-to-use radio modules. Sure, sometimes you want to talk to a computer (a good time to use WiFi) or
perhaps communicate with a Phone (choose Bluetooth Low Energy!) but what if you want to send data very far?
Most WiFi, Bluetooth, Zigbee and other wireless chipsets use 2.4GHz, which is great for high speed transfers. If
you aren't so concerned about streaming a video, you can use a lower license-free ISM frequency
bands (http://adafru.it/mOE) such as 433MHz in ITU Europe or 900 MHz in ITU Americas. You can't send data
as fast but you can send data a lot farther.

Also, these packet radios are simpler than WiFi or BLE, you dont have to associate, pair, scan, or worry about
connections. All you do is send data whenever you like, and any other modules tuned to that same frequency
(and, with the same encryption key) will receive. The receiver can then send a reply back. The modules do
packetization, error correction and can also auto-retransmit so its not like you have worry about everything but
less power is wasted on maintaining a link or pairing.

These modules are great for use with Arduinos or other microcontrollers, say if you want a sensor node nework
or transmit data over a campus or town. The trade off is you need two or more radios, with matching
frequencies. WiFi and BT, on the other hand, are commonly included in computers and phones.

These radio modules come in four variants (two modulation types and two frequencies) The RFM69's are

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 4 of 45

https://en.wikipedia.org/wiki/ISM_band

easiest to work with, and are well known and understood. The LoRa radios are exciting and more powerful but
also more expensive.

All variants are:

Packet radio with ready-to-go Arduino libraries
Uses the amateur or license-free ISM bands (http://adafru.it/mOE): 433MHz is ITU "Europe" license-free
ISM or ITU "American" amateur with limitations. 900MHz is license free ISM for ITU "Americas"
Use a simple wire antenna or spot for uFL or SMA radio connector

RFM69HCW in either 433 MHz or 868/915MHz

These are +20dBm FSK packet radios that have a lot of nice extras in them such as encryption and auto-
retransmit. They can go at least 500 meters line of sight using simple wire antennas, probably up to 5Km with
directional antennas and settings tweakings

SX1231 based module with SPI interface
+13 to +20 dBm up to 100 mW Power Output Capability (power output selectable in software)
50mA (+13 dBm) to 150mA (+20dBm) current draw for transmissions, ~30mA during active radio listening.
Range of approx. 500 meters, depending on obstructions, frequency, antenna and power output
Create multipoint networks with individual node addresses
Encrypted packet engine with AES-128

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 5 of 45

https://en.wikipedia.org/wiki/ISM_band

RFM9x LoRa in either 433 MHz or 868/915MHz

These are +20dBm LoRa packet radios that have a special radio modulation that is not compatible with the
RFM69s but can go much much farther. They can easily go 2 Km line of sight using simple wire antennas, or up
to 20Km with directional antennas and settings tweakings

SX1276 LoRa® based module with SPI interface
+5 to +20 dBm up to 100 mW Power Output Capability (power output selectable in software)
~100mA peak during +20dBm transmit, ~30mA during active radio listening.
Range of approx. 2Km, depending on obstructions, frequency, antenna and power output

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 6 of 45

All radios are sold individually and can only talk to radios of the same part number. E.g. RFM69 900 MHz can
only talk to RFM69 900 MHz, LoRa 433 MHz can only talk to LoRa 433, etc.

Each radio comes with some header, a 3.3V voltage regulator and levelshifter that can handle 3-5V DC power
and logic so you can use it with 3V or 5V devices. Some soldering is required to attach the header. You will
need to cut and solder on a small piece of wire (any solid or stranded core is fine) in order to create your
antenna. Optionally you can pick up a uFL or SMA edge-mount connector and attach an external duck.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 7 of 45

Pinouts

Both RFM69 and RFM9x LoRa breakouts have the exact same pinouts. The silkscreen will say RFM69HCW or
LoRa depending on which variant you have. If there's a green or blue dot on top of the module, its 900 MHz. If
there's a red dot, its 433 MHz

Power Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 8 of 45

The left-most pins are used for power

Vin - power in. This is regulated down to 3.3V so you can use 3.3-6VDC in. Make sure it can supply
150mA since the peak radio currents can be kinda high
GND - ground for logic and power
EN - connected to the enable pin of the regulator. Pulled high to Vin by default, pull low to completely cut
power to the radio.

SPI Logic pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 9 of 45

All pins going into the breakout have level shifting circuitry to make them 3-5V logic level safe. Use whatever
logic level is on Vin!

SCK - This is the SPI Clock pin, its an input to the chip
MISO - this is the Master In Slave Out pin, for data sent from the radio to your processor, 3.3V logic level
MOSI - this is the Master Out Slave In pin, for data sent from your processor to the radio
CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an input to the chip
RST - this is the Reset pin for the radio. It's pulled high by default. Pull down to ground to put it into reset
G0 - the radio's "GPIO 0" pin, also known as the IRQ pin, used for interrupt request notification from the
radio to the microcontroller, 3.3V logic level

Radio GPIO

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 10 of 45

The radio's have another 5 GPIO pins that can be used for various notifications or radio functions. These aren't
used for the majority of uses but are available in case you want them! All are 3.3V logic with no level shifting

Antenna Connection
This three-way connection lets you select which kind of Antenna you'd like, from the lowest cost wire dipole to
the fanciest SMA

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 11 of 45

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 12 of 45

Assembly

Prepare the header strip:

Cut the strip to length if necessary. It will be easier to
solder if you insert it into a breadboard - long pins
down

Add the breakout board:

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 13 of 45

https://learn.adafruit.com/assets/31728

Place the breakout board over the pins so that the
short pins poke through the breakout pads

And Solder!

Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide
to Excellent Soldering (http://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 14 of 45

https://learn.adafruit.com/assets/31729
https://learn.adafruit.com/assets/31730
https://learn.adafruit.com/assets/31731
https://learn.adafruit.com/assets/31732
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and
continue onto the next steps

Antenna Options
These radio breakouts do not have a built-in antenna. Instead, you have three options for attaching an antenna.
For most low cost radio nodes, a wire works great. If you need to put the radio into an enclosure, soldering in
uFL and using a uFL to SMA adapter will let you attach an external antenna. You can also solder an SMA edge-
mount connector directly

Wire Antenna

A wire antenna, aka "quarter wave whip antenna" is low cost and works very well! You just have to cut the wire
down to the right length.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 15 of 45

https://learn.adafruit.com/assets/31733
https://learn.adafruit.com/assets/31734

Cut a stranded or solid core wire the the proper length
for the module/frequency

433 MHz - 6.5 inches, or 16.5 cm
868 MHz - 3.25 inches or 8.2 cm
915 MHz - 3 inches or 7.8 cm

Strip a mm or two off the end of the wire, tin and
solder into the ANT pad.

That's pretty much it, you're done!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 16 of 45

https://learn.adafruit.com/assets/31735
https://learn.adafruit.com/assets/31736
https://learn.adafruit.com/assets/31739

uFL Connector
If you want an external antenna that is a few inches away from the radio, you need to do a tiny bit more work but
its not too difficult.

You'll need to get an SMT uFL connector, these are fairly standard (http://adafru.it/1661)

You'll also need a uFL to SMA adapter (http://adafru.it/851) (or whatever adapter you need for the antenna you'll
be using, SMA is the most common

Of course, you will also need an antenna of some sort, that matches your radio frequency

uFL connectors are rated for 30 connection cycles, but be careful when connecting/disconnecting to not rip the
pads off the PCB. Once a uFL/SMA adapter is connected, use strain relief!

Check the bottom of the uFL connector, note that
there's two large side pads (ground) and a little inlet
pad. The other small pad is not used!

Put down a touch of solder on the signal pad

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 17 of 45

https://learn.adafruit.com/assets/31738
https://www.adafruit.com/products/1661
https://www.adafruit.com/products/851
https://learn.adafruit.com/assets/31746
https://learn.adafruit.com/assets/31747

Solder in the first pad while holding the uFL steady

Solder in the two side pads, they are used for signal
and mechanical connectivity so make sure there's
plenty of solder

Once done, check your work visually

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 18 of 45

https://learn.adafruit.com/assets/31749
https://learn.adafruit.com/assets/31750
https://learn.adafruit.com/assets/31751

Once done attach your uFL adapter and antenna!

SMA Edge-Mount Connector
OK so

You'll need an SMA (or, if you need RP-SMA for some
reason) Edge-Mount connector with 1.6mm spacing

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 19 of 45

https://learn.adafruit.com/assets/31752
https://learn.adafruit.com/assets/31753
https://learn.adafruit.com/assets/31754

The SMA connector 'slides on' the top of the PCB

Once lined up, solder the center contact first

Solder in the two side ground pads. Note you will
need a lot of heat for this, because the connector is
an excellent heat sink and its got a huge ground plane

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 20 of 45

https://learn.adafruit.com/assets/31755
https://learn.adafruit.com/assets/31756

Flip over and also do the other side
ground/mechanical contacts

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 21 of 45

https://learn.adafruit.com/assets/31757
https://learn.adafruit.com/assets/31758
https://learn.adafruit.com/assets/31760
https://learn.adafruit.com/assets/31761

Attach on your antenna, you're done!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 22 of 45

https://learn.adafruit.com/assets/31762
https://learn.adafruit.com/assets/31763

Wiring

Wiring up the radio in SPI mode is pretty easy as there's not that many pins! The library requires hardware SPI
and does not have software SPI support so you must use the hardware SPI port! Start by connecting the power
pins

Vin connects to the Arduino 5V pin. If you're using a 3.3V Arduino, connect to 3.3V
GND connects to Arduino ground
CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digital 13. On Mega's, its
Digital 52 and on Leonardo/Due its ICSP-3 (See SPI Connections for more details (http://adafru.it/d5h))
MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Digital 11. On Mega's, its
Digital 51 and on Leonardo/Due its ICSP-4 (See SPI Connections for more details (http://adafru.it/d5h))
CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can later change this to any pin
RST connects to our radio reset pin. We'll be using Digital 9 but you can later change this pin too.
G0 (IRQ) connects to an interrupt-capable pin. We'll be using Digital 2 but you can later change this pin
too. However, it must connect a hardware Interrupt pin. Not all pins can do this! Check the board
documentation for which pins are hardware interrupts, you'll also need the hardware interrupt number. For
example, on UNO digital 2 is interrupt #0

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 23 of 45

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

RFM69 Test

Note that the sub-GHz radio is not designed for streaming audio or video! It's best used for small packets of
data. The data rate is adjustbale but its common to stick to around 19.2 Kbps (thats bits per second). Lower
data rates will be more successful in their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must be matched in
frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are not). They also must use the same
encoding schemes, you cannot have a 900 MHz RFM69 packet radio talk to a 900 MHz RFM96 LoRa radio.

"Raw" vs Packetized
The SX1231 can be used in a 'raw rx/tx' mode where it just modulates incoming bits from pin #2 and sends them
on the radio, however there's no error correction or addressing so we wont be covering that technique.

Instead, 99% of cases are best off using packetized mode. This means you can set up a recipient for your data,
error correction so you can be sure the whole data set was transmitted correctly, automatic re-transmit retries
and return-receipt when the packet was delivered. Basically, you get the transparency of a data pipe without the
annoyances of radio transmission unreliability

Arduino Libraries

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 24 of 45

These radios have really great libraries already written, so rather than coming up with a new standard we
suggest using existing libraries such as LowPowerLab's RFM69 Library (http://adafru.it/mCz) and AirSpayce's
Radiohead library (http://adafru.it/mCA) which also suppors a vast number of other radios

These are really great Arduino Libraries, so please support both companies in thanks for their efforts!

LowPowerLab RFM69 Library example

To begin talking to the radio, you will need to download RFM69 from their github
repository (http://adafru.it/mCz). You can do that by visiting the github repo and manually downloading or, easier,
just click this button to download the zip

Download RFM69 Library
http://adafru.it/mCB

Rename the uncompressed folder RFM69 and check that the RFM69 folder contains RFM69.cpp and RFM69.h

Place the RFM69 library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one Arduino radio transmits and the other receives. We'll start by setting up
the transmitter

Transmitter example code

This code will send a small packet of data once a second to node address #1

Load this code into your Transmitter Arduino!

/* RFM69 library and code by Felix Rusu - felix@lowpowerlab.com
// Get libraries at: https://github.com/LowPowerLab/
// Make sure you adjust the settings in the configuration section below !!!
// **
// Copyright Felix Rusu, LowPowerLab.com
// Library and code by Felix Rusu - felix@lowpowerlab.com
// **
// License
// **
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 25 of 45

https://github.com/LowPowerLab/RFM69
http://www.airspayce.com/mikem/arduino/RadioHead/
https://github.com/LowPowerLab/RFM69
https://github.com/LowPowerLab/RFM69/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

// You should have received a copy of the GNU General
// Public License along with this program.
// If not, see <http://www.gnu.org/licenses></http:>.
//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **/

#include <RFM69.h> //get it here: https://www.github.com/lowpowerlab/rfm69
#include <SPI.h>

//***
// *********** IMPORTANT SETTINGS - YOU MUST CHANGE/ONFIGURE TO FIT YOUR HARDWARE *************
//***
#define NETWORKID 100 // The same on all nodes that talk to each other
#define NODEID 2 // The unique identifier of this node
#define RECEIVER 1 // The recipient of packets

//Match frequency to the hardware version of the radio on your Feather
//#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_868MHZ
#define FREQUENCY RF69_915MHZ
#define ENCRYPTKEY "sampleEncryptKey" //exactly the same 16 characters/bytes on all nodes!
#define IS_RFM69HCW true // set to 'true' if you are using an RFM69HCW module

//***
#define SERIAL_BAUD 115200

#define RFM69_CS 10
#define RFM69_IRQ 2
#define RFM69_IRQN 0 // Pin 2 is IRQ 0!
#define RFM69_RST 9

#define LED 13 // onboard blinky

int16_t packetnum = 0; // packet counter, we increment per xmission

RFM69 radio = RFM69(RFM69_CS, RFM69_IRQ, IS_RFM69HCW, RFM69_IRQN);

void setup() {
 while (!Serial); // wait until serial console is open, remove if not tethered to computer
 Serial.begin(SERIAL_BAUD);

 Serial.println("Arduino RFM69HCW Transmitter");

 // Hard Reset the RFM module
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, HIGH);
 delay(100);
 digitalWrite(RFM69_RST, LOW);
 delay(100);

 // Initialize radio
 radio.initialize(FREQUENCY,NODEID,NETWORKID);
 if (IS_RFM69HCW) {
 radio.setHighPower(); // Only for RFM69HCW & HW!
 }
 radio.setPowerLevel(31); // power output ranges from 0 (5dBm) to 31 (20dBm)

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 26 of 45

 radio.encrypt(ENCRYPTKEY);

 pinMode(LED, OUTPUT);
 Serial.print("\nTransmitting at ");
 Serial.print(FREQUENCY==RF69_433MHZ ? 433 : FREQUENCY==RF69_868MHZ ? 868 : 915);
 Serial.println(" MHz");
}

void loop() {
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 if (radio.sendWithRetry(RECEIVER, radiopacket, strlen(radiopacket))) { //target node Id, message as string or byte array, message length
 Serial.println("OK");
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 }

 radio.receiveDone(); //put radio in RX mode
 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

void Blink(byte PIN, byte DELAY_MS, byte loops)
{
 for (byte i=0; i<loops; i++)
 {
 digitalWrite(PIN,HIGH);
 delay(DELAY_MS);
 digitalWrite(PIN,LOW);
 delay(DELAY_MS);
 }
}

Once uploaded you should see the following on the serial console

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 27 of 45

Now open up another instance of the Arduino IDE - this is so you can see the serial console output from the TX
Arduino while you set up the RX Arduino.

Receiver example code

This code will receive and acknowledge a small packet of data.

Load this code into your Receiver Arduino!

/* RFM69 library and code by Felix Rusu - felix@lowpowerlab.com
// Get libraries at: https://github.com/LowPowerLab/
// Make sure you adjust the settings in the configuration section below !!!
// **
// Copyright Felix Rusu, LowPowerLab.com
// Library and code by Felix Rusu - felix@lowpowerlab.com
// **
// License
// **
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General
// Public License along with this program.
// If not, see <http://www.gnu.org/licenses></http:>.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 28 of 45

//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **/

#include <RFM69.h> //get it here: https://www.github.com/lowpowerlab/rfm69
#include <SPI.h>

//***
// *********** IMPORTANT SETTINGS - YOU MUST CHANGE/ONFIGURE TO FIT YOUR HARDWARE *************
//***
#define NETWORKID 100 //the same on all nodes that talk to each other
#define NODEID 1

//Match frequency to the hardware version of the radio on your Feather
//#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_868MHZ
#define FREQUENCY RF69_915MHZ
#define ENCRYPTKEY "sampleEncryptKey" //exactly the same 16 characters/bytes on all nodes!
#define IS_RFM69HCW true // set to 'true' if you are using an RFM69HCW module

//***
#define SERIAL_BAUD 115200

#define RFM69_CS 10
#define RFM69_IRQ 2
#define RFM69_IRQN 0 // Pin 2 is IRQ 0!
#define RFM69_RST 9

#define LED 13 // onboard blinky

int16_t packetnum = 0; // packet counter, we increment per xmission

RFM69 radio = RFM69(RFM69_CS, RFM69_IRQ, IS_RFM69HCW, RFM69_IRQN);

void setup() {
 while (!Serial); // wait until serial console is open, remove if not tethered to computer
 Serial.begin(SERIAL_BAUD);

 Serial.println("Feather RFM69HCW Receiver");

 // Hard Reset the RFM module
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, HIGH);
 delay(100);
 digitalWrite(RFM69_RST, LOW);
 delay(100);

 // Initialize radio
 radio.initialize(FREQUENCY,NODEID,NETWORKID);
 if (IS_RFM69HCW) {
 radio.setHighPower(); // Only for RFM69HCW & HW!
 }
 radio.setPowerLevel(31); // power output ranges from 0 (5dBm) to 31 (20dBm)

 radio.encrypt(ENCRYPTKEY);

 pinMode(LED, OUTPUT);

 Serial.print("\nListening at ");

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 29 of 45

 Serial.print(FREQUENCY==RF69_433MHZ ? 433 : FREQUENCY==RF69_868MHZ ? 868 : 915);
 Serial.println(" MHz");
}

void loop() {
 //check if something was received (could be an interrupt from the radio)
 if (radio.receiveDone())
 {
 //print message received to serial
 Serial.print('[');Serial.print(radio.SENDERID);Serial.print("] ");
 Serial.print((char*)radio.DATA);
 Serial.print(" [RX_RSSI:");Serial.print(radio.RSSI);Serial.print("]");

 //check if received message contains Hello World
 if (strstr((char *)radio.DATA, "Hello World"))
 {
 //check if sender wanted an ACK
 if (radio.ACKRequested())
 {
 radio.sendACK();
 Serial.println(" - ACK sent");
 }
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 }

 radio.receiveDone(); //put radio in RX mode
 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

void Blink(byte PIN, byte DELAY_MS, byte loops)
{
 for (byte i=0; i<loops; i++)
 {
 digitalWrite(PIN,HIGH);
 delay(DELAY_MS);
 digitalWrite(PIN,LOW);
 delay(DELAY_MS);
 }
}

Now open up the Serial console on the receiver, while also checking in on the transmitter's serial console. You
should see the receiver is...well, receiving packets

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 30 of 45

And, on the transmitter side, it is now printing OK after each transmisssion because it got an acknowledgement
from the receiver

That's pretty much the basics of it! Lets take a look at the examples so you know how to adapt to your own radio
network

Radio Net & ID Configuration
The first thing you need to do for all radio nodes on your network is to configure the network ID (the identifier
shared by all radio nodes you are using) and individual ID's for each node.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 31 of 45

//***
// *********** IMPORTANT SETTINGS - YOU MUST CHANGE/ONFIGURE TO FIT YOUR HARDWARE *************
//***
#define NETWORKID 100 // The same on all nodes that talk to each other
#define NODEID 2 // The unique identifier of this node

Make sure all radios you are using are sharing the same network ID and all have different/unique Node ID's!

Radio Type Config

You will also have to set up type of radio you are using, an encryption key if you're using it, and the type of radio
(high or low power)

//Match frequency to the hardware version of the radio on your Feather
//#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_868MHZ
#define FREQUENCY RF69_915MHZ
#define ENCRYPTKEY "sampleEncryptKey" //exactly the same 16 characters/bytes on all nodes!
#define IS_RFM69HCW true // set to 'true' if you are using an RFM69HCW module

For all radios they will need to be on the same frequency. If you have a 433MHz radio you will have to stick to
433. If you have a 900 Mhz radio, go with 868 or 915MHz, just make sure all radios are on the same frequency

The ENCRYPTKEY is 16 characters long and keeps your messages a little more secret than just plain text

IS_RFM69HCW is used for telling the library that we are using the high power version of the radio, make sure
its set to true

Radio Pinout
 This is the pinout setup - you can change around the reset and CS pins to any pin. the IRQ pin should be an
interrupt pin. On an UNO this is pin #2 (IRQ 0) or pin #3 (IRQ 1). Each chipset has different interrupt pins!

#define RFM69_CS 10
#define RFM69_IRQ 2
#define RFM69_IRQN 0 // Pin 2 is IRQ 0!
#define RFM69_RST 9

You can then instantiate the radio object with our custom pin numbers. Note that the IRQ is defined by the IRQ
number not the pin.

RFM69 radio = RFM69(RFM69_CS, RFM69_IRQ, IS_RFM69HCW, RFM69_IRQN);

Setup
We begin by setting up the serial console and hard-resetting the RFM69

void setup() {
 while (!Serial); // wait until serial console is open, remove if not tethered to computer
 Serial.begin(SERIAL_BAUD);

 Serial.println("RFM69HCW Transmitter");

 // Hard Reset the RFM module
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, HIGH);

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 32 of 45

 delay(100);
 digitalWrite(RFM69_RST, LOW);
 delay(100);

Remove the while (!Serial); line if you are not tethering to a computer, as it will cause the Feather to halt until a
USB connection is made!

Initializing Radio

The library gets initialized with the frequency, unique identifier and network identifier. For HCW type modules
(which you are using) it will also turn on the amplifier. You can also configure the output power level, the number
ranges from 0 to 31. Start with the highest power level (31) and then scale down as necessary

Finally, if you are encrypting data transmission, set up the encryption key

 // Initialize radio
 radio.initialize(FREQUENCY,NODEID,NETWORKID);
 if (IS_RFM69HCW) {
 radio.setHighPower(); // Only for RFM69HCW & HW!
 }
 radio.setPowerLevel(31); // power output ranges from 0 (5dBm) to 31 (20dBm)

 radio.encrypt(ENCRYPTKEY);

Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet with "Hello World #" and an
incrementing packet number, then check for an acknowledgement

void loop() {
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 if (radio.sendWithRetry(RECEIVER, radiopacket, strlen(radiopacket))) { //target node Id, message as string or byte array, message length
 Serial.println("OK");
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 }

 radio.receiveDone(); //put radio in RX mode
 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

Its pretty simple, the delay does the waiting, you can replace that with low power sleep code. Then it generates
the packet and appends a number that increases every tx. Then it simply calls sendWithRetry to the address in
the first argument (RECEIVER), and passes in the array of data and the length of the data.

If you receive a true from that call it means an acknowledgement was received and print OK - either way the
transmitter will continue the loop and sleep for a second until the next TX.

Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop() {

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 33 of 45

 //check if something was received (could be an interrupt from the radio)
 if (radio.receiveDone())
 {
 //print message received to serial
 Serial.print('[');Serial.print(radio.SENDERID);Serial.print("] ");
 Serial.print((char*)radio.DATA);
 Serial.print(" [RX_RSSI:");Serial.print(radio.RSSI);Serial.print("]");

 //check if received message contains Hello World
 if (strstr((char *)radio.DATA, "Hello World"))
 {
 //check if sender wanted an ACK
 if (radio.ACKRequested())
 {
 radio.sendACK();
 Serial.println(" - ACK sent");
 }
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 }

 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

Instead of transmitting, it is constantly checking if there's any data packets that have been received.
receiveDone() will return true if a packet for the current node, in the right network and with the proper
encryption has been received. If so, the receiver prints it out.

It also prints out the RSSI which is the receiver signal strength indicator. This number will range from about -15
to -80. The larger the number (-15 being the highest you'll likely see) the stronger the signal.

If the data contains the text "Hello World" it will also acknowledge the packet.

Once done it will continue waiting for a new packet

Want more?

We have an example for Feather Radio that shows bidirectional button press and OLED displays, check it out
here (http://adafru.it/mOB)

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 34 of 45

file:///adafruit-feather-32u4-radio-with-rfm69hcw-module/using-the-radio#receiver-slash-transmiter-demo

RFM9X Test

Note that the sub-GHz radio is not designed for streaming audio or video! It's best used for small packets of
data. The data rate is adjustbale but its common to stick to around 19.2 Kbps (thats bits per second). Lower
data rates will be more successful in their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must be matched in
frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are not). They also must use the same
encoding schemes, you cannot have a 900 MHz RFM69 packet radio talk to a 900 MHz RFM96 LoRa radio.

Arduino Library
These radios have really excellent code already written, so rather than coming up with a new standard we
suggest using existing libraries such as AirSpayce's Radiohead library (http://adafru.it/mCA) which also suppors
a vast number of other radios

This is a really great Arduino Library, so please support them in thanks for their efforts!

RadioHead RFM9x Library example

To begin talking to the radio, you will need to download the RadioHead library (http://adafru.it/mCA). You can do
that by visiting the github repo and manually downloading or, easier, just click this button to download the zip
corresponding to version 1.59

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 35 of 45

http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/

Note that while all the code in the examples below are based on this version you can visit the RadioHead
documentation page to get the most recent version which may have bug-fixes or more
functionality (http://adafru.it/mCA)

Download RadioHead v1.59
http://adafru.it/mHC

Uncompress the zip and find the folder named RadioHead and check that the RadioHead folder contains
RH_RF95.cpp and RH_RF95.h (as well as a few dozen other files for radios that are supported)

Place the RadioHead library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one Arduino transmits and the other receives. We'll start by setting up the
transmitter

Transmitter example code

This code will send a small packet of data once a second to node address #1

Load this code into your Transmitter Arduino!

// LoRa 9x_TX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (transmitter)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example LoRa9x_RX

#include <SPI.h>
#include <RH_RF95.h>

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

void setup()
{
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial);
 Serial.begin(9600);
 delay(100);

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 36 of 45

http://www.airspayce.com/mikem/arduino/RadioHead/
https://cdn-learn.adafruit.com/assets/assets/000/031/670/original/RadioHead-1.59.zip?1460574831
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

 Serial.println("Arduino LoRa TX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

int16_t packetnum = 0; // packet counter, we increment per xmission

void loop()
{
 Serial.println("Sending to rf95_server");
 // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();
 // Now wait for a reply
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 Serial.println("Waiting for reply..."); delay(10);
 if (rf95.waitAvailableTimeout(1000))
 {
 // Should be a reply message for us now
 if (rf95.recv(buf, &len))
 {
 Serial.print("Got reply: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);
 }
 else

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 37 of 45

 {
 Serial.println("Receive failed");
 }
 }
 else
 {
 Serial.println("No reply, is there a listener around?");
 }
 delay(1000);
}

Once uploaded you should see the following on the serial console

Now open up another instance of the Arduino IDE - this is so you can see the serial console output from the TX
Arduino while you set up the RX Arduino.

Receiver example code

This code will receive and acknowledge a small packet of data.

Load this code into your Receiver Arduino!

// Arduino9x_RX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (receiver)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example Arduino9x_TX

#include <SPI.h>
#include <RH_RF95.h>

#define RFM95_CS 10

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 38 of 45

#define RFM95_RST 9
#define RFM95_INT 2

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

// Blinky on receipt
#define LED 13

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial);
 Serial.begin(9600);
 delay(100);

 Serial.println("Arduino LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 39 of 45

 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

 // Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");
 digitalWrite(LED, LOW);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
}

Now open up the Serial console on the receiver, while also checking in on the transmitter's serial console. You
should see the receiver is...well, receiving packets

You can see that the library example prints out the hex-bytes received 48 65 6C 6C 6F 20 57 6F 72 6C 64 20 23 30 0 20

20 20 20 0, as well as the ASCII 'string' Hello World. Then it will send a reply.

And, on the transmitter side, it is now printing that it got a reply after each transmisssion And hello back to you

because it got a reply from the receiver

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 40 of 45

That's pretty much the basics of it! Lets take a look at the examples so you know how to adapt to your own radio
setup

Radio Pinout
This is the pinout setup - you can change around the reset and CS pins to any pin. the IRQ pin should be an
interrupt pin. On an UNO this is pin #2 or pin #3. Each chipset has different interrupt pins!

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

Frequency
You can dial in the frequency you want the radio to communicate on, such as 915.0, 434.0 or 868.0 or any
number really. Different countries/ITU Zones have different ISM bands so make sure you're using those or if you
are licensed, those frequencies you may use

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

You can then instantiate the radio object with our custom pin numbers.

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

Setup
We begin by setting up the serial console and hard-resetting the Radio

void setup()

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 41 of 45

{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial); // wait until serial console is open, remove if not tethered to computer
 Serial.begin(9600);
 delay(100);
 Serial.println("Arduino LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

Remove the while (!Serial); line if you are not tethering to a computer, as it will cause the Arduino to halt until a
USB connection is made!

Initializing Radio

The library gets initialized with a call to init(). Once initialized, you can set the frequency. You can also configure
the output power level, the number ranges from 5 to 23. Start with the highest power level (23) and then scale
down as necessary

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);

Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet with "Hello World #" and an
incrementing packet number

void loop()
{
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!
 Serial.println("Transmitting..."); // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 42 of 45

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();

Its pretty simple, the delay does the waiting, you can replace that with low power sleep code. Then it generates
the packet and appends a number that increases every tx. Then it simply calls send to transmit the data, and
passes in the array of data and the length of the data.

Note that this does not any addressing or subnetworking - if you want to make sure the packet goes to a
particular radio, you may have to add an identifier/address byte on your own!

Then you call waitPacketSent() to wait until the radio is done transmitting. You will not get an automatic
acknowledgement, from the other radio unless it knows to send back a packet. Think of it like the 'UDP' of radio -
the data is sent, but its not certain it was received! Also, there will not be any automatic retries.

Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

Instead of transmitting, it is constantly checking if there's any data packets that have been received. available()
will return true if a packet with proper error-correction was received. If so, the receiver prints it out in hex and
also as a 'character string'

It also prints out the RSSI which is the receiver signal strength indicator. This number will range from about -15
to about -100. The larger the number (-15 being the highest you'll likely see) the stronger the signal.

Once done it will automatically reply, which is a way for the radios to know that there was an acknowledgement

// Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");

It simply sends back a string and waits till the reply is completely sent

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 43 of 45

Downloads

Datasheets & Files
SX127x Datasheet (http://adafru.it/oBm)- The RFM9X LoRa radio chip itself
SX1231 Datasheet (http://adafru.it/mCv) - The RFM69 radio chip itself
RFM69HCW datasheet (http://adafru.it/mCu)- contains the SX1231 datasheet plus details about the
module (http://adafru.it/mFX)
RFM9X (http://adafru.it/mFX) - The radio module, which contains the SX1272 chipset
FCC Test Report (http://adafru.it/r6d)
EagleCAD PCB files on GitHub (http://adafru.it/oem)
Fritzing objects in the Adafruit Fritzing library (http://adafru.it/c7M)

Schematic
RFM69 and RFM9X have the same pinout so the same schematic is used

Fabrication Print
RFM69 and RFM9X have the same layout so the same board is used

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 44 of 45

https://cdn-shop.adafruit.com/product-files/3179/sx1276_77_78_79.pdf
https://cdn-shop.adafruit.com/product-files/3076/sx1231.pdf
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-V1.1.pdf
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-shop.adafruit.com/product-files/3070/p3070p3076_RFM69HCW-915S2-FCC.pdf
https://github.com/adafruit/Adafruit-RFM-LoRa-Radio-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/

© Adafruit Industries Last Updated: 2016-09-13 05:09:04 PM UTC Page 45 of 45

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI Logic pins:
	Radio GPIO
	Antenna Connection
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Antenna Options
	Wire Antenna

	uFL Connector
	SMA Edge-Mount Connector
	Wiring
	RFM69 Test
	"Raw" vs Packetized
	Arduino Libraries
	LowPowerLab RFM69 Library example

	Basic RX & TX example
	Transmitter example code
	Receiver example code

	Radio Net & ID Configuration
	Radio Type Config

	Radio Pinout
	Setup
	Initializing Radio
	Transmission Code
	Receiver Code

	Want more?
	RFM9X Test
	Arduino Library
	RadioHead RFM9x Library example

	Basic RX & TX example
	Transmitter example code
	Receiver example code

	Radio Pinout
	Frequency
	Setup
	Initializing Radio
	Transmission Code
	Receiver Code

	Downloads
	Datasheets & Files
	Schematic
	Fabrication Print

